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Quasiscaling exponent �n
M;D is introduced by the ratio of turbulence velocity structure functions

Sn�rD� /Sn�rM�= �rD /rM��n
M;D

at scales rM and rD to measure the viscous and large-scale effects. Two inertial
phenomenologies, respectively, that by She and Leveque �Phys. Rev. Lett. 72, 336 �1994�� and that by
Meneveau and Sreenivason �Phys. Rev. Lett. 59, 1424 �1987��, are extended for quasiscaling as case studies.
Both extended models fit well to the measurements and quantify the noninertial behaviors from different
physical aspects, i.e., logarithmic-nonhomogeneous Poissonian and nonconservative binomial cascade, through
the scale-dependent behaviors of the model parameters extracted from experimental data; and the physical
meanings of the extended self-similarity properties for them are exposed.
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I. INTRODUCTION

Inertial physics of turbulence has long been attacked �1�;
however Kraichnan cautioned �2�

“The Kolmogorov theories have profoundly shaped
and illuminated thinking about turbulence. But, in one
respect, this influence perhaps has been unfortunate:
relatively little attention has been devoted to the pre-
diction of turbulence statistics at finite Reynolds num-
bers. Finite Reynolds number turbulence has a rich and
interesting structure. Moreover, it is likely that the
questions of intermittency correction to K41 can be
resolved only when a detailed understanding of dy-
namics at finite Reynolds numbers has been achieved.”
Noninertial physics of turbulence concerns the viscous

and large-scale effects embodied in the bendings in the log-
log plot of statistical moments, such as velocity structure
functions, versus scales or Fourier spectrum versus wave
numbers �or frequencies� among others �3�. Following the
idea of gradual viscous cutoff �4�, scale-dependent singular-
ity exponent and the concept of multifractal universality
have been introduced �1� to account for viscous effects. Re-
cently, especially inspired by the observation of extended
self-similarity �ESS� �5�, Batchelor-type parametrizations,
originally used as a simple transition function from inertial to
viscous range, regained employments, even for the transition
from inertial to large-scale stirring range �6� and, more cou-
rageously, for the transitions of the random multiplier and the
probability distribution function �PDF� of the singularity ex-
ponent for Lagrangian velocity statistics �7�; and, very re-
cently, analysis of turbulence under the framework of en-
tropy introduced by Tsallis �8� has also received much
interest �9�. Both approaches have won some successes,
however dynamical understanding and physical justification
are still lacking �10�.

We will measure the curvatures in the log-log plot of ve-
locity structure functions versus scales by the quasiscaling
exponents. Physics of noninertial cascade is then revealed
qualitatively by extending inertial phenomenology by She

and Leveque �SL� �11� and that by Meneveau and
Sreenivasan �MS� �12� to quasiscalings, quantifying viscous
dissipating and external stirring effects. We manage to make
inertial theories “fortunate” for the understanding of nonin-
ertial turbulence.

This paper is organized as follows. In Sec. II, we intro-
duce the concept of quasiscaling and analyze an experimen-
tal turbulence by extending SL and MS models. Further ap-
proximation and analysis with ESS are made in Sec. III; and
Sec. IV summarizes this work and offers further discussions.

II. QUASISCALING ANALYSIS

For the nth order velocity structure function Sn�−ln r�
= ���vr�n�, with �vr being the velocity increment along the
separation r and �·� denoting the average, one can introduce a
local scaling exponent, by taking the “time” t=−ln r and
Ln�t�=−ln Sn�t� for convenience, with the form �n

L�t�
=dLn�t� /dt �see, for example, Lohse et al. �6��. �Here and
later, we use t or r depending on which one is more conve-
nient in the situation.� We now define quasiscaling with
mother- and daughter-eddy scales rM and rD,

Sn�tD�/Sn�tM� = �rD/rM��n
M;D

, �1�

and call �n
M;D the quasiscaling exponent, which arises natu-

rally from the random multiplicative process �RMP� model
�1,11,12�,

�vrD = WrMrD�vrM , �2�

with �n
M;D=ln�WrMrD

n � / ln�rD /rM�. Inertial scaling is a special
scale-free case. It is evident that

�n
M;D = �

tM

tD

�n
L�t�dt/�tD − tM� . �3�

Concrete models are at hand by direct extensions of the
inertial ones.
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A. Logarithmic-nonhomogeneous Poissonian cascade

1. Extended SL phenomenology

In the RMP model, i.e., Eq. �2�, if we take

P�WrMrD� = e−�M;D�
k=0

�
��M;D�k

k!
��WrMrD − wk

M;D� �4�

with wk
M;D=e−�M;D

	i=0
k �i

M;D and let �i
M;D=�M;D when i�0

and �0
M;D=1, we have the quasiscaling exponent

SL�n
M;D = �M;Dn + 	M;D�1 − ��M;D�n�; �5�

and if further letting �M;D=�, we obtain

SL�n
M;D = �M;Dn + 	M;D�1 − �n� �6�

and

SL�n
L�t� = ��t�n + 	�t��1 − �n� �7�

by Eq. �3�: Here, a local rate function 	�t� and the most
singular exponent ��t� have been introduced by

�M;D = �
tM

tD

	�t�dt = 	M;D�tD − tM� �8�

and

�M;D = �
tM

tD

��t�dt = �M;D�tD − tM� . �9�

The presuperscript “SL” comes from the fact that when ��t�
and 	�t� are constant, they reduce to the She-Leveque inertial
scaling which was found able to be realized by logarithmic-
Poisson statistics �11�. We now have the extended She-
Leveque �ESL� quasiscaling by introducing the logarithmic-
nonhomogeneous Poisson process �LNHPP� �13�. These
results can also be obtained by direct extension of the hier-
archical similarity �EHS� following the original derivation by
She and Leveque �11� �see Sec. III A�.

Poissonian statistics provides a quantized description of
turbulent cascade �see She and Waymire �11��. The “energy”
of the highest state of the cascade structure WrMrD is w0

M;D

= �rD /rM��M;D
, and that of the intermediate state is wk

M;D

= �rD /rM��M;D
	i=0

k �i
M;D. When �i

M;D=�, 	�t�, being constant
in the inertial range, measures the arrival rate of the defect
quanta �. More deep fluid dynamical and statistical mean-
ings can be extrapolated from the thoughtful papers in Ref.
�11�. Here, it is a simple scale-free to scale-dependent gen-
eralization. Similar ideas have in fact already been presented
by Benzi et al. �14�. The equality �i

M;D=� �i�0� is, in fact,
a requirement of the ESS property and can be tested by ex-
periment �see text below and in Sec. III A�; when ESS is not
valid, Eq. �5� may still apply.

2. Measurement, fitting, and analysis

It is easy to measure the quasiscaling exponents �rather
than the local scaling exponent, which concerns taking de-
rivatives and is impossible for the discreteness of the data
points which are especially sparse in the viscous range�, and

fit them with a certain model such as Eq. �6�; and we call
such a procedure quasiscaling analysis. We perform it in an
experimental turbulent pipe flow studied previously in Refs.
�15,16�. The objects are the time series of velocity signals at
and along the center line of the pipe.

Figure 1 is the plot for L9�t�=−ln S9�t� �17� and the sketch
of the quasiscaling exponent, where the arrow points to the
largest �mother-eddy� scale rmax

�M� =112 we will analyze, r be-
ing in units of sampling time applying Taylor’s frozen flow
assumption as in Refs. �15,16�. No inertial range appears and
for scales much larger than rmax

�M� the structure function begins
to saturate and we can observe that it varies with “time” t �or
scale r� not in a monotonic way at some large-scale points
subjecting to boundary effects or insufficient size of samples
or others.

Figures 2 and 3 present, respectively, the excellent linear

FIG. 1. The ninth order structure function, with the sketch of the
quasiscaling exponent, measured at the center line of turbulent pipe
flow. The arrow points to the largest mother-eddy scale rmax

�M� =112.
The sketch shows that the quasiscaling exponent is �n

M;D

=tan 
n
M;D, the slope of the slash connecting the two data points at

mother- and daughter-eddy scales as denoted here for n=9.

FIG. 2. �n
M;D measured and fitted with ESL quasiscaling.

Mother-eddy scale is fixed as rM =112. Larger exponents corre-
spond to smaller daughter-eddy scale rD ranging from 2 to 96.
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least square fittings directly with Eq. �6� and the resulted
parameters. In fact, we have done the nonlinear fitting with
Eq. �5� and find that �M;D is nearly constant around 0.913
with very small variations and the improvements in fittings
are unobservable with bare eyes, so we fix it; and we will
show in Sec. III A that this is the requirement of the ESS
property. We remark that fixing rM =112 is for permitting a
largest variation range of rD and for convenience of calcula-
tion and one can also fix rD and let rM vary; and it should be
noted that although the quasiscaling exponents and corre-
sponding parameters depend on the choice of rM and rD, the
local scaling exponents and corresponding parameters are in-
variable and so the fittings with ESL quasiscaling would be
equally well for other choices of scales �such as those in
EMS fitting in Sec. II B� as those presented here.

Figure 3 deserves further digestion. As commented in the
end of Sec. II A 1, 	�t� is the local defect rate of the cascade
structure WrMrD, measurement presented in this figure �ob-
serve the inset with its explanation in the caption and see the
remark on physical model for it in Sec. IV� shows that it
increases as “time” goes �r decreases�, meaning dissipation
accelerates the defect and so decelerates the energy cascade,
i.e., decreases the energy transfer rate �1,19�. The variation
law of �M;D �or ��t�� is similar to that of 	M;D �or 	�t�� �see
also Sec. III A�. Since �M;D �or ��t�� is the �local� exponent
of the most intensive cascade structure W

rMrD
��� �or fluctuation

�v�t����, F��t� in Sec. III A�, it is now indicated that viscosity
weakens the cascade structures and gentles the fluctuations.
External stirring acts on the opposite side. Following the SL
phenomenology, codimension or probability interpretation
�1,11� now tells that dissipation reduces the chance
�rD /rM�	M,D

to capture, with a ball of size rD, the most inten-
sive structures in a ball of size rM; and the geometrical prop-
erties of the most intensive structures, which were claimed to
be ideal vortex filaments in the inertial range of fluid turbu-
lence by She and Leveque �11�, vary with scale subjecting to
dissipation and stirring effects, being continuously the inter-
mediate objects between vortex globs �	�t�=0�, sheets

�	�t�=1�, filaments �	�t�=2�, zero-dimension �	�t�=3� and
other minus-dimension structures �	�t��3�, whose topolo-
gies change gradually as cascades proceed, the actual local
codimension calculated by central difference from Eq. �8� is
between 1 and 7 in the scale range analyzed as shown in the
inset.

We conclude this section by remarking that when tD �rD�
is near to tM �rM�, the errors from moments in computing
quasiscaling exponent become relatively evident for small
Ln�tD�−Ln�tM�; and as �M;D’s are very small, contributing
slightly to the exponents, their evaluations by direct fittings
are sensitive to variations. The “anomalous” behavior for
large rD in Fig. 3 is understandable and can be largely elimi-
nated by application of ESS property �see Sec. III A�.

B. Nonconservative binomial cascade

1. Extended MS phenomenology

Meneveau and Sreenivasan have analyzed a simple bino-
mial cascade model fitting well to the measured dimension
spectrum �12�. The physical picture is simply that every
mother-eddy breaks down into two equally sized daughter-
eddies who inherit, respectively, pM;D and qM;D portion of the
energy flux. It is direct to obtain extended Meneveau-
Sreenivasan �EMS� quasiscaling,

MS�n
M;D = 1 − ln��pM;D�n/3 + �qM;D�n/3�/ln�2� �10�

by taking P�WrMrD�= �rD /rM���(WrMrD − �pM;D�n/3)+�(WrMrD

− �qM;D�n/3)� in the RMP model, i.e., Eq. �2� or directly

P�W̃rMrD�= �rD /rM����W̃rMrD − pM;D�+��W̃rMrD −qM;D�� in

�vrD
3 = W̃rMrD�vrM

3 with rM =2rD. Note that the energy flux Fr

flowing through a domain of size r is estimated by Fr
�vr
3

�1�. It is again a generalization from inertial cascade, where
constant energy flux and degree of intermittency of energy
transfer requires, respectively, pM;D+qM;D=1 and pM;D

−qM;D=0.4 �12�; now dissipative extraction an external feed-
ing breaks the conservation of energy flux and is quantified
by pM;D+qM;D−1; and the degree of intermittency pM;D

−qM;D may also become scale dependent.

2. Measurement, fitting, and analysis

Figures 4 and 5 present the fittings of the measured qua-
siscaling exponent and the resulted parameters using the
Levenberg-Marquardt nonlinear least square fitting algorithm
with the help of software ORIGIN 7.0 for the same turbulence
data used above. Fittings of the quasiscaling are satisfying
though not so well as those by ESL after careful observation.
Figure 5 shows that the total energy, denoted by pM;D

+qM;D, inherited by corresponding daughter-eddies varies
with scale and runs across the balance line pM;D+qM;D=1.
Since no inertial range appears, turbulent fluctuations at all
scales are subjected to mixing effects of viscous extraction
and large-scale feeding; what we measured is the net result.
Degree of intermittency is revealed by the difference be-
tween pM;D and qM;D and interestingly we find that the value
pM;D−qM;D�0.4=0.7−0.3 extends approximately over the
noninertial range. We will verify in Sec. III B that this is a
result of the ESS property.

FIG. 3. Parameters fitted with SL quasiscaling directly, i.e., with
Eq. �6� and with combination of ESS �see also Sec. III A�. The inset
presents the local rate function 	�t� calculated by Eq. �8� from 	M;D

fitted with the combination of ESS by central difference scheme.
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III. FURTHER DIGESTION AND APPROXIMATION
WITH ESS

Extended self-similarity claims the following relative
scaling �5�:

Sn�t� � �S3�t���n. �11�

It has been widely discussed and receives a blend of support
and disapproval; for example, Meneveau �6� have shown that
ESS is consistent with assuming the cutoff length decrease
with increasing order of the moment but it is not always
valid as shown by his multifractal formalism. We will verify
by our measurements shown in the following sections that it
is at least a very accurate approximation for moments of
order not very high.

It is interesting to find that now we do not have to do the
conventional linear fitting �5,15� in estimating the relative

scaling exponent �n. It is just the ratio of our quasiscaling
exponents, i.e.,

�n = �n
M;D/�3

M;D. �12�

A. ESS-ESL (EHS)

1. Formulation

We now extend the hierarchical similarity �EHS� of She
and Leveque �11� as

Fn+1
M;D

F�
M;D = �Fn

M;D

F�
M;D
�M;D

, �13�

where

Fn
M;D =

Fn�tD� = Sn+1�tD�/Sn�tD�
Fn�tM� = Sn+1�tM�/Sn�tM�

=
Sn+1�tD�/Sn+1�tM� = Sn+1

M;D

Sn�tD�/Sn�tM� = Sn
M;D .

From such an extension, it is easy to derive the ESL quasi-
scaling presented in Sec. II A 1; we do not pursue it here.
Combining EHS and ESS, i.e., taking F�

M;D= �S3
M;D��, and

further letting �M;D=� to obtain the scale-free relative scal-
ing exponents, we can rewrite Eq. �13� as

Fn+1
M;D/�S3

M;D�� = �Fn
M;D/�S3

M;D����. �14�

Bring Eq. �11� into �14�, we have the SL relative scaling
exponent,

�n = �n + C�1 − �n� , �15�

which is constrained by 1=3�+C�1−�3�. Equation �6� to-
gether with Eqs. �12� and �15� leads to the following rela-
tions: 	M;D=C�3

M;D, �M;D=��3
M;D, and so C /�=	M;D /�M;D

=H or �=�M;D=0 �the so-called saturation of exponents
when n→� �18��, i.e., 	 is proportional to � and this is why
we remarked that the �M;D directly fitted in Fig. 3 for large
rD is “anomalous.”

We see that ESS-ESL �EHS� corresponds to take
P�WrMrD�=e−�M;D

�k=0
� ���M:D�k /k!���WrMrD − �S3

M;D���k� in
the RMP model, i.e., Eq. �2�. As She and Waymire �11� show,
since � is constant, now the multiplier regains the infinite
divisibility property for the third order velocity structure
function S3 but not for scales. Furthermore, �M;D=C�ln S3

M

−ln S3
D�, and so, by Eq. �8� and the definition of local scaling

exponent in the beginning of Sec. II, we have 	�t�=C�3
L�t�

which shows that viscous �large-scale� effect squeezes
�stretches� the “time” t resulting in acceleration of the defect
speed with the transformation function �3

L�t�. Note that, for
F�

M;D= �S3
M;D��, the probability of the most intensive structure

�MIS� is self-similar in the amplitude space with a single
scaling exponent H whatever the scale is, as p�WrMrD

MIS �
= ��WrMrD

MIS �= �S3
M;D���H, the larger H is, the rarer is the MIS.

This is the physical result of constant degree of intermittency
quantified by � which is the meaning of ESS property in
ESL.

2. Measurement, test, and digestion

Figures 6 and 7, called “ESS-EHS �-test” and “ESS-EHS
�-C test,” respectively, as in the captions, estimate the pa-

FIG. 4. �n
M;D measured and fitted with EMS quasiscaling with

rM =2rD. Larger exponents correspond to smaller scales with rD

ranging from 2 to 56.

FIG. 5. Parameters fitted with MS quasiscaling. The two hori-
zontal dashed lines designate, respectively, the balance line of dis-
sipation and feeding �pM;D+qM;D=1� and the approximate degree
of intermittency required by the ESS property �see Sec. III B�.
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rameters by testing the structures of the claimed similarity
Eq. �14� and exponent Eq. �15�, resulting in the optimal �
=0.051 and �=0.913; the fitted � for various n are also
included in the inset showing very small variations. The op-
timal � is a little smaller than that by Ching et al. �16� and
larger than that by Zou et al. �15�. Note that we have used
ESS and making iterations in these two fittings to obtain
values with least total errors, which is believed to produce
more stable and reliable results. Figure 8 presents the fitting
with ESS-ESL relative scaling exponents, the resulted pa-
rameters are included in Fig. 3 for comparison. We see that
ESS-ESL works well, the ratios of quasiscaling exponents
�n

M;D /�3
M;D do collapse and the scatters, which are not mono-

tonic with scales �for both cases� in Fig. 8 as we have ob-
served in the data files �not shown here�, so serves as error
bars in the traditional linear fitting and the resulted param-
eters are stabilized �maybe rightly improved� much.

The ESS-ESL parameter � measured here is between the
inertial saturation version of Chen and Cao �18� and the
original one of She and Leveque �11�. If the latter parametri-
zation is right, this should be explained as finite Reynolds

number effects. When ��t�=0, the local most intensive struc-
ture is shocklike �16,18�; our quasiscaling analysis now
shows that this is an asymptotic state for r→� by the effect
of large-scale stirring. We also cautiously comment that it
seems quite unreasonable that the most intensive structures
are still shocklike even when viscous effect enters.

B. ESS-EMS

1. Formulation

From Eq. �10� we have the EMS relative scaling expo-
nent,

�n
M;D/�3

M;D =
1 − log2��pM;D�n/3 + �qM;D�n/3�

1 − log2�pM;D + qM;D�

= �n = 1 − log2�
n/3 + 
̃n/3� . �16�

The n→� asymptotic relation being pM;D= �qM;D�ln 
/ln 
̃,
not as ESS-ESL, Eq. �16� does not have a set of self-

consistent relations �no such pM;D, qm;D, 
, and 
̃ satisfy it
for all n� unless in the inertial range, i.e., ESS and EMS are
not exactly consistent.

2. Measurement, test, and digestion

Since ESS and EMS are not consistent, we cannot apply
ESS to fit the parameters as in ESS-ESL; however, we
should see how severe it is. If the inconsistency is not so
remarkable, the EMS phenomenology does accurately por-
tray the physics and the quantification for nonconservative
energy cascade is still reasonable. Figure 8 shows that EMS

relative scaling with 
=0.7, 
̃=1−
 fits well to the mea-
surement. Numerical experiments presented in Fig. 9 show

that the asymptotic relation pM;D= �qM;D�ln 
̃/ln 
 is “errone-
ous” while pM;D−qM;D=0.4 is quite accurate, ESS and EMS
are approximately “consistent” with high accuracy in the ex-

FIG. 6. ESS-EHS �-test, Eq. �14�. The inset presents � fitted for
different order n.

FIG. 7. ESS-EHS �-C test, Eq. �15�. �n is evaluated by averag-
ing �n

M;D /�3
M;D for distinct rD.

FIG. 8. Relative scaling exponents from quasiscaling exponents
and fittings. Those for MS are shifted upward by 0.5. In measuring
�n

M;D /�3
M;D, rD, and rM for ESL are those in Fig. 1 and Fig. 3 and

those in Fig. 5 for EMS.
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perimentally reachable range with pM;D−qM;D�0.4 as pre-
sented in Fig. 5, showing nearly constant degree of intermit-
tency, which is just the physical meaning of ESS property in
EMS.

IV. SUMMARY AND DISCUSSION

We have shown that inertial theories of turbulence are
useful for exploring the noninertial physics of turbulence. By
performing quasiscaling analysis, we have successfully ex-
tended inertial phenomenologies to quantify the viscous and
large-scale effects as case studies. The extension for SL
model is consistent with ESS, while, except in the inertial
range, that for MS model is not exactly so. However, within
the present experimental resolution and capacity, either ex-
tended phenomenology is quite accurate, portraying respec-
tive physics, logarithmic-nonhomogeneous �nonstationary�
Poissonian and nonconservative binomial cascade. Interest-
ingly, while it is controvertible whether or not the correction
to K41 is needed for the inertial turbulence �1,20�, we here
use the intermittency phenomenologies as finite Reynolds
number theories. It is also possible that K41 normal scaling

is the asymptotic state for �M;D→1 in ESL or for pM;D

−qM;D→0 in EMS which remains for further study.
Fluctuation amplitude PDFs, multifractal dimension spec-

trum and structure functions �of velocity increments� are all
equivalent presentations of turbulence statistics. The present
quasiscaling analysis for velocity structure functions indicate
that EMS and ESL mechanism highly accurately reproduce
the correct results for the intermediate ranges. Distinguishing
the extrapolations for the statistics of very weak and inten-
sive events concerns the neighborhood of zero points or the
far tails of PDFs, the dimension spectrum at very large or
small singularity exponent values, and moments for very low
�even negative� or high orders; this is limited by the preci-
sion, measuring range of the instruments, sample size, and so
on. This work is mainly based on measurements without
much dynamical consideration, which will involve quantita-
tively those factors such as the viscosity, the characteristics
of large-scale stirring and would lead to concrete models of
	M;D �or 	�t�� and pM;D in ESL and EMS. We note that a
dynamical theory of multifractal may also be possible as was
done very recently by Yakhot and Sreenivasan �21�. How-
ever, precise and massive experiments are highly desirable
for further theoretical speculation and verification.

In the end, we remark that the RMP model, though not
necessary, makes the formulation of quasiscaling theory
transparent and suggestive and gives a clear physical picture.
It bridges the PDFs of turbulent fluctuations at two distinct
scales but, without an ad hoc ansatz of the “initial-time” PDF
�i.e., the PDF at the largest scale studied�, gives no informa-
tion of the local PDF as was done recently by Beck et al.
�22� in another line based on nonextensive statistical me-
chanics �8,9� which can also detect some scale-dependent
information. Different approaches should be complementary
and need further interaction towards an integrated theory of
turbulence in the future.
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